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Received 8 July 1997

Abstract. Coherent states are studied within the framework of complex measurable processes.
It is shown that squeezed states can be accommodated within this framework and all the relevant
results relating to squeezed states are derived. A generalization to complex coordinates is also
provided and it is shown to lead to the Wigner distribution in a natural way.

1. Introduction

The object of this paper is to establish the viability of the complex measure theoretic
framework to accommodate the coherent state and squeezed state extensively discussed in
the literature (see, for example, Glauber (1963), Sudarshan (1963), Yuen (1976), Loudon
and Knight (1989)). Complex measurable processes were introduced earlier (Srinivasan and
Sudarshan (1994), Srinivasan (1995, 1997) referred to as papers I, II and III respectively),
mainly to describe quantum phenomena by an enlargement of the notions of probability
based on positive definite measures. Instead of interpreting the two slit experiment as a
symptom of failure of classical notions, it was proposed that a framework of an extended
measure can form the basis for a theory of quantum phenomena. In paper II, the harmonic
oscillator was discussed in all its details since it forms the basis for the discussion of
the general problem of radiation. The discussion of the forced harmonic oscillator was
continued in paper III where it was shown that the problem of interaction of radiation with
matter could be accommodated within the framework of complex measure and measurable
processes. The present contribution is in the same spirit and we show how the coherent
state and the squeezed coherent state can be accommodated within the complex measure
theoretic framework (CMTF).

The layout of the paper is as follows. In section 2 the displaced oscillator is identified
as a Markov process with appropriate drift and diffusion functions. The complex measure
density is then arrived at as the solution of the resulting Fokker–Planck equation: the
properties of the coherent states are then derived. Section 3 deals with the squeezed coherent
state in a similar manner. The next section deals with the complex coordinate representation
for an oscillator and it is shown to lead to a Wigner distribution. The final section contains
a summary and discussion of the main results of the paper.

† Emeritus.
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2. Coherent state representation

We first consider the harmonic oscillator in the CMTF. At the outset we note that the basic
assumptions are as follows:

(i) the underlying complex measurable stochastic process{X(t); t > 0} is Markov and
the measure of any (measurable) set is absolutely bounded;

(ii) the diffusion and drift limits do exist in the sense that

lim
1→∞

E{[X(t +1t)−X(t)]2 | X(t) = x}
1t

= 2D = ih̄

M
(2.1)

lim
1→∞

E{[X(t +1t)−X(t)] | X(t) = x}
1t

= 2D = −iωx. (2.2)

If we introduce the complex measure density (CMD)5(x | x0; t) by

5(x | x0; t) = lim
1→∞

Pr{x < X(t) < x +1 | X(0) = x0}
1

(2.3)

then it is shown in paper II that5(x | x0; t) satisfies a Fokker–Planck equation provided
the total measure is constrained to be unity and the solution itself is given by

5(x | x0; t) =
[

exp

(
− Mω

h̄

[x eiωt − x0]2

e2iωt − 1

)](
Mω e2iωt

πh̄(e2iωt − 1)

)1
2

. (2.4)

We can indeed generate a stationary process by receding the time origin to−∞. The
stationary complex measure density turns out to be real and can be identified as the limit
of 5 as t →∞ (under the gimmickω→ ω − iε)

5(x) = lim
t→∞5(x | x0; t) =

(
Mω

πh̄

)1
2

exp

(
− Mωx

2

h̄

)
. (2.5)

The modulus measure density introduced in paper I is indeed5(x) itself. Incidentally,
we have the result that the ground state is the only state that is stationary in the strict
probabilistic sense, its probability density being specified by (2.5).

Next we note that the modulus measure introduced here extended to all measurable sets
can be shown to lead to a Hilbert space (see paper III). Generalizing the results of Feller
(1971), we can introduce the square rootg of any complex measure densityf and define
the norm‖g‖ by

‖g‖ =
∫

[g(x)]2 dx

=
∫

[f (x)] dx <∞.

The class of all functionsg will be denoted byL2; the norm induces the natural metric
(g1, g2) and the metric spaceL2 is complete with the inner product defined by

(g1, g2) =
∫
g1(x)g2(x) dx

so that the space is rendered to be a Hilbert space. Thus, we have a fusion of probability
with Hilbert space and we are comfortably placed to answer questions that are raised and
answered in the conventional treatment of quantum phenomena.

The measure density given by (2.5) pertains to the coordinate of the harmonic oscillator.
To deal with the momentum, we attempt to be in strict conformity with complementarity
principles; the duality principle of de Broglie can be subsumed (see, for example, Misner
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et al (1972)) by taking the momentum as the dual variable and dealing with the Fourier
transform of the square root of5

5̃
1
2 (p) = 1√

2π

∫
e−ipx/h̄5

1
2 (x) dx. (2.6)

The modulus square of̃5
1
2 yields the momentum distribution

|5̃ 1
2 (p)|2 dp

h̄
= dp

πMh̄ω
exp

(
− p2

Mh̄ω

)
(2.7)

from which we conclude that the variance of the momentumP is given by

VarP = h̄
2
Mω. (2.8)

The uncertainty principle (now confined to the ground state) is expressed in terms of the
variances ofX andP .

To deal with the coherent state, we modify the drift term defined by (2.2) to correspond
to the displaced oscillator

lim
1→∞

E{[X(t +1t)−X(t)] | X(t) = x}
1t

= −iω(x − β) (2.9)

whereβ is an arbitrary complex number. Then the conditional complex measure density
5(x, t | x0; t0) satisfies the Fokker–Planck equation

∂5(x, t | x0, t0)

∂t
− iω

∂

∂x
[(x − β)5(x, t | x0, t0)] + ih̄

2M

∂25(x, t | x0, t0)

∂x2
(2.10)

with the initial condition

5(x, t0 | x0, t0) = δ(x − x0). (2.11)

The above equation can be solved and we obtain

5(x, t | x0, t0) =
(

Mω

πh̄(1− e2iωT )

)1
2

exp

(
− Mω

h̄

[(x − β) eiωT − (x0− β)]
e2iωT − 1

)
(2.12)

whereT = t − t0. The stationary-state solution corresponds to the ground state and is the
limit as T = t − t0→∞ of 5

5(x, β) = lim5(x, t | x0, t0) =
(
Mω

πh̄

)1
2

exp

(
− Mω

h̄
(x − β)2

)
. (2.13)

It is worth noting that the limit is still a complex measure density (CMD). SettingM = 1, we
note that the coherent state wavefunction (Glauber 1963, Sudarshan 1963) can be obtained
by taking the square root of the CMD with the identification

α =
(
ω

2h̄

)1
2

β. (2.14)

It is worth noting that Sudarshan usesz in the place ofα (see Klauder and Sudarshan
(1968)). Questions relating to momentum are answered by resorting to a Fourier transform
of the square root of the CMD

5̃
1
2 (p, β) = 1√

2π

∫
e−ipx/h̄5

1
2 (x, β)dx

=
(
h̄

πω

)1
2

exp

(
−
{
(p − iβω)2

2h̄ω
− [β2+ (Imβ)2]

2h̄
ω

})
. (2.15)
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If we take the modulus square, we obtain the results corresponding to the observable modulus
measure of the relevant densities

511(x, β) = N |5(x, β)| =
(
ω

πh̄

)1
2

exp

(
− ω
h̄
(x − Reβ)2

)
(2.16)

511(p, β)dp = N |5̃ 1
2 (p, β)|2 = dp

h̄

(
1

πωh̄

)1
2

exp

(
− (p − ω Imβ)2

h̄ω

)
dp (2.17)

whereN , the normalization constant, is so chosen that∫
511(x, β)dx = 1 (2.18)

which by Plancharel’s theorem ensures that511(p, β) is a conserved momentum density in
the sense ∫

511(p, β)dp =
∫
511(x, β)dx. (2.19)

Using the modulus measure density, we obtain

E[X] = β1 = Reβ =
(

2h̄

ω

)1
2

Reα (2.20)

E[P ] = ωβ2 = ω Imβ = (2h̄ω) 1
2 Imα (2.21)

VarX = h̄

2ω
(2.22)

VarP = h̄ω
2
. (2.23)

To establish further correspondence with the results of Glauber and Sudarshan, we start with
the CMD of the stationary state of the displaced oscillator

5sty(x, β) =
(
Mω

πh̄

)1
2

exp

(
− Mω

h̄
(x − β

√
2)2
)

(2.24)

where the particular choice ofβ is to make the correspondence with Sudarshan’s results
complete. We setω = h̄ = 1= M and introduceφβ(x) by

φβ(x) = N5sty(x, β) (2.25)

whereN is so chosen to render the total modulus measure unity

N = exp(−2(Imβ)2). (2.26)

We next note that the square rootφ
1
2
β (x) of φβ(x) belongs to the Hilbert space defined earlier

and we can conveniently deal with the projections for they acquire a special meaning in
the complex measure theoretic framework. The inner product corresponding to the CMD
labelled byβ andα is defined by

(φ
1
2
β , φ

1
2
α ) =

∫
φ

1
2
β (x)φ

1
2
α (x) dx. (2.27)

Evaluating the integral, we obtain

(φ
1
2
β , φ

1
2
α ) = exp{ᾱβ − 1

2|α|2− 1
2|β|2+ iα1α2− iβ1β2} (2.28)

which is in agreement with the Glauber–Sudarshan formula except for the phase factors. In
the CMTF the phase factor is unique and follows from the fact that all complex measures
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are normalized to unity. It should be noted thatφ
1
2
β represents the same state as that denoted

by |β〉 in conventional treatment and the left-hand side of (2.28) is nothing but〈α | β〉.
In a similar way we can evaluate the inner product with the Hermite functions{φn}

which legitimately belong to the Hilbert space in question. Thus we find

〈n | β〉 = (φ
1
2
β , φn) =

βn

(n!)
1
2

exp

(
− |β|

2

2
− iβ1β2

)
(2.29)

a relation form which we have∑
n

〈β | n〉〈n | α〉 = exp

{
αβ̄ − 1

2
|α|2− 1

2
|β|2− iα1α2+ iβ1β2

}
(2.30)

in agreement with the Glauber–Sudarshan formula except for the phase factors. In the
CMTF the phase factor is unique and follows from the normalization (2.25). Generally
some arbitrariness arises in the conventional treatment; instead of(Imβ)2, (Imβ)2− iβ1β2

is used. This is due to the fact that the constant termβ2 is replaced by(1/2)β2+(1/2)|β|2 so
that the real part completes the square of the argument under the exponential. In the CMTF
β2 → β2 + (Imβ)2 due to normalization of the modulus measure so that the imaginary
part is left intact. The phase factors disappear in the final estimate when we resort to the
modulus measure.

Next we show that any CMDf rather than its square root can be expressed in terms of
the measure functions corresponding to coherent states. To do this we first form the scalar

product off
1
2 with φ

1
2
α .

(f
1
2 , φ

1
2
α ) =

∫
f

1
2 (x)φ

1
2
α (x) dx. (2.31)

To evaluate the integral, we note thatf
1
2 admits an expansion in terms of Hermite functions

f
1
2 =

∑
f

1
2
n φn(x) (2.32)

while†

φ
1
2
α (x) =

∑
φm(x) e−|α|

2/2 αm

(m!)
1
2

. (2.33)

Thus we have

(f
1
2 , φ

1
2
α ) =

∑
f

1
2
m e−|α|

2/2 ᾱm

(m!)
1
2

= f̃ 1
2 (ᾱ) e−|α|

2/2 (2.34)

where

f̃
1
2 (ᾱ) =

∑
m

f
1
2
m

ᾱm

(m!)
1
2

. (2.35)

It is to be noted thatf̃
1
2 (ᾱ) is a function of the complex variablēα associated with the

CMD f (.) which is a complex valued function of a real argument. Thus, we are led to
an analytic function of the complex variable as in coherence theory; we can now take the

† From now on we dispense with the phase factors in choosingN to be in conformity with conventional treatment.
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scalar product withφ
1
2
β . To do this we can use the operations which are now well defined

in the CMTF:∑
α

〈β | α〉〈α | f 1
2 〉 =

∑
α

〈β | α〉
∑
m

〈α | m〉〈m | f 1
2 〉

= 1

π

∫
exp

{
− |α|2− 1

2
|β|2+ β̄α

}
f̃ 1

2
(ᾱ) d2α (2.36)

which is the analogue of equation (4.8) of Glauber (1963). We can now expandf̃ 1
2
(ᾱ) in

Taylor series to obtain finally

〈β | f 1
2 〉 = exp{− 1

2|β|2}f̃ 1
2
(β̄) (2.37)

which leads to a more general projective relation

〈g 1
2 , f

1
2 〉 = 1

π

∫
exp(−|β|2) g̃ 1

2 (β̄)f
1
2 (β̄) d2(β̄). (2.38)

Thus the correspondence is extensive in all respects. Finally, we observe that it is indeed
possible to regardα(β) as a (complex measurable) random variable. If we denote byP(α)

the complex measure density, the following special choices ofP(α), lead to interesting
cases known in the literature:

(i) the choiceP(α) = δ(α − α0) leads to the coherent state (a Poisson distribution for
the number of photons);

(ii) the choiceP(α) = (1/π〈n〉) e(−|α|
2/〈n〉) leads to thermal light (the Bose–Einstein

distribution for the number of photons with〈n〉 as the mean number).
If the complex measure density in (ii) is centred aroundα0, then we obtain the familiar

case of the amplitude mixture of coherent and chaotic streams. Thus the notationP(.) is
deliberate to bring out the analogy with theP -function of Glauber–Sudarshan.

3. Squeezed coherent state

At the outset we note that in the CMTF the diffusion constant fixes the scale of variance;
accordingly we modify the diffusion function by assuming

lim
1→∞

E{[X(t +1)−X(t)]2 | X(t) = x}
1

= 2D = ih̄λ

M
(3.1)

whereλ is an arbitrary positive real number. The drift function is taken to be specified
by (2.2). Then the conditional probability measure density5 satisfies (2.10) where ¯h is
replaced by ¯hλ. It is convenient to specifyλ by

λ = e−2s (s > 0). (3.2)

Then we find that the stationary-state solution is given by

5stg=
(
Mω

πh̄λ

)1
2

exp

(
− Mω
h̄λ

x2

)
. (3.3)

The expected values are still given by (2.20) and (2.21). The variances are now modified

VarX = h̄

2ωM
e−2s (3.4)

VarP = h̄ωM
2

e2s . (3.5)
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It is convenient to introduce the dimensionless variablesX̂ and Ŷ

X̂ =
(
Mω

2h̄

)1
2

X (3.6)

Ŷ = (2h̄Mω)− 1
2P (3.7)

so that we have

VarX̂ = 1
4 e−2s Var Ŷ = 1

4 e2s (3.8)

VarX̂Var Ŷ = 1
16. (3.9)

Next, we can consider a more general type of squeezing by modifying (3.1) by

2D = ih̄A

M
(3.10)

whereA = A1+ iA2 is an arbitrary complex parameter withA1 > 0. The stationary solution
is now given by

5X(x) = lim5 =
(
Mω

πh̄A

) 1
2

exp

(
− Mω
h̄A

x2

)
. (3.11)

We introduce the normalized measure densityφX(x) by

φX(x) = N 5X(x) (3.12)

so thatN
∫ |5(x)| dx = 1. The variance follows from the modulus measure density

VarX = 1

2

|A|2
A1

h̄

ωM
(3.13)

VarX̂ = 1

4

|A|2
A1

. (3.14)

The Fourier transformφ
1
2
P (p) of φ

1
2
X(x) is given by

φ
1
2
P (p) =

(
A1h̄

πMω

)1
4

exp

(
− Ap2

2h̄Mω

)
(3.15)

so that the modulus measure density of the momentum is given by

φ11(p,A) = |φ
1
2
P (p)|2

1

h̄
=
(

A1

h̄πMω

)1
2

exp

(
− A1p

2

h̄Mω

)
. (3.16)

Thus we have

VarP = 1

2

h̄ωM

A1
Var Ŷ = 1

4
A1 (3.17)

VarX̂Var Ŷ = 1

16

(
1+ A

2
2

A2
1

)
> 1

16
. (3.18)

WhenA2 = 0, the product of the variances is a minimum. We can set

A = µ− ν
µ+ ν µ = coshs ν = eiθ sinhs (3.19)
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to be in conformity with Caves (1981) (see also Loudon and Knight (1987)); then the
variances take the form

VarX = h̄

2Mω

(
e−2s cos2

θ

2
+ e2s sin2 θ

2

)
(3.20)

VarP = Mωh̄

2

(
e−2s sin2 θ

2
+ e2s cos2

θ

2

)
. (3.21)

The most general type of squeezing is obtained by choosing the drift coefficient as specified
by (2.9) and the diffusion by (3.10); in this case the stationary complex measure density is
given by

5(x, β) =
(
Mω

πh̄A

)1
2

exp

(
− Mω
h̄A

(x − β
√

2)2
)

(3.22)

where we have usedβ
√

2 in place ofβ. As before we defineφβ as the normalized density
and this leads us to the density functionφγ on settingM = h̄ = ω = 1

φγ =
(

1

2πη2

)1
2

exp

(
−
[
x2

2η2

(
1− i

A2

A1

)
− 2xγ

η
− γ 2− |γ |2

])
(3.23)

whereη2 is the natural variance of the coordinate defined by

η2 = 1

2

|A|2
A1

(3.24)

γ 2 = β2Ā

AA1
. (3.25)

The expression (3.23) corresponds to the two photon coherent states discussed by Yuen
(1976) and Dodunovet al (1980). The states labelled byγ yield states very similar to
coherent states and coincide with them forA2 = 0. More generally whenA2 6= 0, the
scalar product of any two members of the Hilbert space generated by{φγ } for two different
γ is explicitly given by

(φ
1
2
γ , φ

1
2
γ ′) = exp(− 1

2|γ |2− |γ ′|2+ γ̄ ′γ ) (3.26)

in conformity with equation (3.14) of Yuen (1976). If we reserve the subscriptα for the
usual coherent states, we also have

(φ
1
2
γ , φ

1
2
α ) =

(
1

µ

)1
2

exp

[
−|γ |

2

2
− |ᾱ|

2

2
− ᾱ

2ν

2µ
+ ᾱγ

µ

(
µ− ν
µ− ν̄

)1
2

+ ν̄γ
2

2µ

(
µ− ν
µ− ν̄

)
+ iθ0

]
(3.27)

where θ0 is an arbitrary real number. The above formula is in agreement with the one
derived by Yuen (1976) provided we identifyβ of Yuen asγ ((µ− ν)/(µ− ν̄)) 1

2 .

4. Complex coordinate representation and holomorphic extension

It is very illuminating to extend the formalism developed to the harmonic oscillator with a
complex coordinate system. We present the formalism for a general system corresponding
to a forced harmonic oscillator since this will be useful in other context like radiation in
interaction with matter.
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We start with a general Markov process{Z(t)} which is complex measurable with
the measure of any (measurable) set being absolutely bounded. The drift and diffusion
coefficients are specified by

lim
1→∞

E{[Z(t +1)− Z(t)] | Z(t) = z}
1

= −iwz+ B(t) (4.1)

lim
1→∞

E{[Z(t +1)− Z(t)][ Z̄(t +1)− Z̄(t)] | Z(t) = t}
1

= 4D. (4.2)

The drift and diffusion coefficients correspond to the Langevin equation

z̈ = −ω2z+ f (t) (4.3)

andB(t) is related tof (t) by

B(t) =
∫ t

0
f (u) eiω(t−u) du. (4.4)

If 5(z|z0, t) is the complex measure density, then5 satisfies the Fokker–Planck equation

∂5(z | z0, t)

∂t
= − ∂

∂z
[iωz+ B(t)]5− ∂

∂z
[−iωz̄+ B̄(t)]5+ 4D

∂25

∂z∂z̄
. (4.5)

It is shown in the appendix that (4.5) can be solved with its solution given by (A.8).
Reverting to real variables, we find

5(z | z0, t) = Mω e2iωt

πh̄(e2iωt − 1)
exp

{
− Mω

h̄(e2iωt − 1)

[{
x eiωt − x0−

∫ t

0

B + B̄
2

eiωs ds

}2

+
{
y eiωt − y0−

∫ t

0

B − B̄
2i

eiωs ds

}2]}
(4.6)

where 2D is chosen to be (i¯h/2M) and z = x + iy. From the general result given earlier
we can deduce that the stationary-state solution of a free harmonic oscillator (B(t) = 0)
corresponding to the ground state is

5H
sty(z) =

Mω

πh̄
exp

(
− Mω

h̄
(x2+ y2)

)
. (4.7)

Likewise we can independently deduce that the ground-state (stationary-state) solution of a
displaced oscillator with displacementβ is given by

5H
sty =

Mω

πh̄
exp

(
− Mω

h̄
(z− β)(z̄− β̄)

)
. (4.8)

Before we discuss the implication of these results, we also present a solution for5 when
initially the oscillator is constrained to be in the ground state rather than with coordinates
constrained atz0. This is simply obtained by multiplying5 by the ground-state measure
density evaluated atz0 and then integrating overx0 andy0

5H
gd(z, t) =

Mω

πh̄
exp

{
− Mω

h̄

[(
z−

∫ t

0
B(s) e−iω(t−s) ds

)(
z̄−

∫ t

0
B̄(s) e−iω(t−s) ds

)]}
.

(4.9)

This formula is quite useful in developing a formalism to deal with the problem of the
interaction of radiation with matter on lines parallel to the path integral development of
Feynman and Hibbs (1965).

At the outset we note that the ground-state solution of the free harmonic oscillator given
by (4.7) is the holomorphic extension of the complex measure density (2.5). The random
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variableZ = X + iY has the measure density given by (4.5) and the variances are now
given by

VarX = VarY = h̄

2Mω
. (4.10)

If we set

X = Q (coordinate) Y = P

Mω
(4.11)

X̂ = Q
(
ω

2h̄

)1
2

Ŷ = P

(2h̄ω)
1
2

(4.12)

we find

5H(ẑ) = 2

π
exp(−2|ẑ|2). (4.13)

Thus,5H(ẑ) can be interpreted to be the Wigner distribution. From now on we writez in
the place of̂z (misuse of notation). If we make the transformation

z = µζ + νζ̄ µ = coshs ν = eiθ sinhs (4.14)

then by a repeated misuse of the notation, we obtain the Wigner distribution for the squeezed
state

5H(z) = 2

π
exp(−2|µz+ νz̄|2)

= 2

π
exp

{
− 1

2(1− ρ2)

(
x2

σ 2
X

+ y2

σ 2
Y

− 2ρXY xy

σXσY

)}
(4.15)

where

σ 2
X =

1

4
(µ− ν)(µ− ν̄) = 1

4

(
e2s sin2 θ

2
+ e−2s cos2

θ

2

)
σ 2
Y =

1

4
(µ+ ν)(µ+ ν̄) = 1

4

(
e2s cos2

θ

2
+ e−2s sin2 θ

2

)
ρ = −sinh 2s sinθ

4σXσY
. (4.16)

The expression (4.15) has been derived by Dodunovet al (1980) who preferred to identify
the state as a correlated state. The results relating to the variances and other properties
obtained by Caves (1981), Yuen (1976) and Loudon and Knight (1988) follow.

A still more general state can be obtained by starting from (4.8) and then applying a
‘squeezing’ transformation (4.14); then we obtain, again retainingz for the transformed
variable

5H = 2

π
exp

[
− 1

2(1− ρ2)

{
(x − Reα)2

σ 2
X

+ (y − Imα)2

σ 2
Y

− 2ρ(x − Reα)(y − Imα)

σXσY

}]
(4.17)

whereβ = µα + νᾱ.
The holomorphic CMD of the displaced oscillator given by (4.8) admits an elegant

expansion in terms of complex Hermite functions (Hida 1980). We replaceβ by α
√

2 and
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express5H the holomorphic CMD, or rather its square root as

5
1
2
H =

(
1

π

)1
2

exp

(
− 1

2
(z− α

√
2)(z̄− ᾱ

√
2)

)
=
(

1

π

)1
2

exp

[
−1

2
|z|2− 1

2
|α|2

]∑ Hmn(z, z̄)

(m!)
1
2 (n!)

1
2

(
ᾱ√
2

)m (
α√
2

)n
.

(4.18)

This corresponds to the coherent state labelled byα, the complex Hermite functional

representation being a typical one. We can now obtain the projection of5
1
2
H (α) on5

1
2
H (β);

thus, we have

(5
1
2
H (α),5

1
2
H (β)) =

∫ ∫
1

π

{
exp

[
− 1

2
(z− α

√
2)(z̄− ᾱ

√
2)

]
× exp

[
− 1

2
(z− β

√
2)(z̄− β̄

√
2)

]}
dx dy

= exp

[
− 1

2
|α − β|2

]
(4.19)

which is the generalization of the formula for〈β | α〉 in the coherent state representation
(2.30).

Next we explore the possibility of expanding any holomorphic extension of the CMD
in terms of the coherent state; this runs parallel to the development discussed in section 2.
Thus if f is the extension of any CMD then we can define the projection by

(f
1
2 ,5

1
2
H ) =

∫ ∫
5

1
2
H (α)f

1
2 dx dy. (4.20)

We expandf
1
2 in terms of Hermite functions

f
1
2 =

∑
f

1
2
mn

Hmn(z, z̄)

(m!n!)
1
2

exp

(
− 1

2
|z|2

)
. (4.21)

Using the expansion (4.18), we have

(f
1
2 ,5

1
2
H ) = f̃

1
2 (α, ᾱ) e−|α|

2/2 (4.22)

where

f̃1/2(ᾱ, α) =
∑

f
1
2
mn

(
α√
2

)m(
ᾱ√
2

)n
. (4.23)

Thus f̃1/2 is a function ofα and ᾱ satisfying positive definiteness

f̃1/2(α, ᾱ) = f̃1/2(α, ᾱ). (4.24)

It is to be noted that there still remains the problem of arriving at an holomorphic extension
in cases other than Gaussian. It is in this context the generalization of theP -function
introduced earlier assumes significance.

At this stage some general remarks are in order. The amplitude function corresponding
to φγ as given by (3.23) as well as the Wigner distribution (4.15) was derived by Dodunov
et al (1980) using the conventional Hilbert space approach. The coefficient of (x2/2η2)
under the exponent in (3.23) is taken to be the complex parameter 1−(ir/(1−r2)

1
2 ) andr is

identified as the correlation coefficient of the conjugate variables. Dodunovet al attempt to
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explain away the apparent conflict with the complementarity principle by the statement that a
knowledge of the existence of the correlation coefficient implies an enhanced (uncertainty)
value of the product of the variances. This should be contrasted with the approach of
Caves (1981), Yuen (1976) and Loudon and Knight (1987) who always avoid any statement
on the existence or otherwise of the correlation coefficient. Now the results provided
in sections 2 and 3 also avoid any reference to the joint distribution of coordinates and
momentum; in fact the results presented in sections 2 and 3 are in strict conformity with the
complementarity principle; the results relating to the coordinate are derived first and those
relating to momentum are then derived by the extended principle of duality. Although the
expression forφγ given by (3.23) is in agreement with the one derived by Dodunov, the
CMFT cannot determine the constantr identified asA2/A1, even by a thought experiment.
When the physically observable modulus measure transformation is made,r slips out of the
picture. Thus the CMTF avoids any reference to the joint distribution/correlation between
the coordinate and momentum. However, the situation gets drastically altered when the
complex measure density for the complex coordinate is introduced; identifying the complex
measure density as the Wigner distribution tacitly assumes the existence of the joint measure
density although in a complex measure theoretic sense. Thus the Fokker–Planck equation
for the measure density has a transparency, albeit a bit embarassing. If complementarity
has to be preserved absolutely in its best form, it is prudent to avoid the use of the results
presented in this section; the results presented in sections 2 and 3 are viable enough to
describe all the situations we are likely to encounter in fundamental physics.

5. Summary and conclusions

In this paper we have worked within the measure theoretic framework to discuss the basic
formulation of a coherent state and squeezed coherent state with the harmonic oscillator as
the basic building block. The motion of the quantum harmonic oscillator is identified as a
complex measurable stochastic process with a Markov property; an appropriate choice of
the drift and diffusion function leads to the correct complex measure density in configuration
space. The diffusion function which fixes the scale of the variance plays a key role; different
choices of the diffusion function lead to different types of complex measure density. The
complex measure density function or rather its square root by virtue of the constraints
imposed generates a suitable Hilbert space framework. We have shown that the CMTF
is versatile enough to describe diverse situations and yield many of the properties of the
coherent states and squeezed coherent states. A general harmonic oscillator with complex
coordinates has also been discussed; in particular we have shown that this leads to a
Fokker–Planck equation whose solution can be identified with the Wigner distribution in
special cases. The logical problems that arise by the introduction of complex coordinates
along with their identification as conjugate variables have also been discussed. While the
complex coordinate representation and the holomorphic extension of the CMD may appear
to be powerful, it should be conceded that it has a limited role in the description of quantum
phenomena in view of its apparent conflict with complementary principles.
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Appendix

Our starting point is the Fokker–Planck equation (4.3) satisfied by5. We convert the
equation using real variables. Thus the equation becomes

∂5

∂t
= ∂5

∂x

(
iωx − B + B̄

2

)
+ 2iω5+ ∂5

∂y

(
iωy − B − B̄

2i

)
+ D

2

(
∂2

∂x2
+ ∂2

∂y2

)
5. (A.1)

By introducing the characteristic coordinates (ξ, η) by

ξ = x eiωt − 1

2

∫ t

0
(B + B̄) eiωs ds (A.2)

η = y eiωt − 1

2
i
∫ t

0
(B − B̄) eiωs ds (A.3)

and setting

5(x, y, t) = e2iωtρ(ξ, η, t) (A.4)

we obtain

∂ρ

∂t
= D e2iωt

(
∂2ρ

∂ξ2
+ ∂

2ρ

∂η2

)
. (A.5)

The solution for the initial condition

5(x, y,0) = δ(x − x0)δ(y − y0) (A.6)

is given by

ρ = Mω

πh̄(e2iωt − 1)
exp

[
− Mω

h̄(e2iωt − 1)
[(ξ − ξ0)

2+ (η − η0)
2]

]
. (A.7)

We thus have

5(z, z0, t) = Mω e2iωt

πh̄(e2iωt − 1)
exp

[
− Mω

h̄(e2iωt − 1)

(
z eiωt − z0−

∫ t

0
B(s) eiωs ds

)
×
(
z̄ eiωt − z̄0−

∫ t

0
B̄(s) eiωs ds

)]
. (A.8)
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